- геодезическая кривизна
- геодези́чна кривина́
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
ГЕОДЕЗИЧЕСКАЯ КРИВИЗНА — в точке кривой на поверхности скорость вращения касательной к вокруг нормали к , т. е. проекция на вектора угловой скорости вращения касательной при движении вдоль . Предполагается, что и регулярны и ориентированы, с … Математическая энциклопедия
Геодезическая кривизна — см. Кривизна … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Геодезическая кривизна — … Википедия
ГЕОДЕЗИЧЕСКАЯ ЛИНИЯ — геодезиче ская, геометрическое понятие, обобщающее понятие прямой (или отрезка прямой) евклидовой геометрии на случай пространств более общего вида. Определения Г. л. в различных пространствах зависят от того, какая из структур (метрика, линейный … Математическая энциклопедия
КРИВИЗНА — собирательное название ряда количественных характеристик (численных, векторных, тензорных), описывающих отклонение свойств того или иного объекта (кривой, поверхности, риманова пространства и др.) от соответствующих объектов (прямая, плоскость,… … Математическая энциклопедия
Кривизна — Под большей или меньшей кривизной линии разумеется большее или меньшее уклонение ее от прямолинейного вида, и можно сказать, что окружность тем кривее, чем меньшим радиусом она описана; при очень больших радиусах окружность уклоняется от… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ГЕОДЕЗИЧЕСКАЯ ОБЛАСТЬ — связное множество точек поверхности таких, что для каждой точки хсуществует круг с центром в х, при этом имеет один из следующих видов: 1) ; 2) полукруг круга; 3) … Математическая энциклопедия
ЗАМКНУТАЯ ГЕОДЕЗИЧЕСКАЯ — замкнутая гладкая кривая на римановом многообразии М, к рая является геодезической линией. Более общее понятие геодезическая петля, т. е. геодезическая y(t)( ), проходящая при t=a и t=b через одну и ту же точку р;рассматриваемая как замкнутая… … Математическая энциклопедия
Поверхность — У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность традиционное название для двумерного многообразия в … Википедия
Касательная плоскость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия поверхностей — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия